A Parameter Identification Method for Dynamics of Lithium Iron Phosphate Batteries Based on Step-Change Current Curves and Constant Current Curves

نویسندگان

  • Zhichao He
  • Geng Yang
  • Languang Lu
  • Izumi Taniguchi
چکیده

Abstract: Parameterization of battery dynamics based on terminal operating data is a main concern in engineering applications of batteries. The key technology is designing an adequate test procedure and a data processing procedure to excite different inner dynamics and then estimate the parameters of a corresponding equivalent circuit model (ECM). This paper proposes a parameter identification method that utilizes the terminal voltage curves (TVC) under step-change current conditions and constant current conditions. With this method, I-V characteristics of battery’s Ohmic resistance, mass diffusion process, thermal process and SOC varying process are decoupled and parametric functions of an ECM are obtained. Experimental results show that the method is easy to be implemented and modeling accuracy is sufficient for applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INITIAL SINTERING KINETICS OF LITHIUM META TITANATE AT CONSTANT RATES OF HEATING

In order to evaluate the sintering behavior of lithium meta titanate (Li2TiO3) powder, the shrinkage of powder compact was measured under constant rates of heating. Densification curves for Li2TiO3 have been constructed with the help of shrinkage powder measured at different heating rates. The activation energy at the initial stage of sintering was determined by analyzing the densification curv...

متن کامل

State of health estimation for lithium ion batteries based on charging curves

An effective method to estimate the state of health (SOH) of lithium ion batteries is illustrated in this work. This method uses an adaptive transformation of charging curves at different stages of life to quantify the extent of capacity fade and derive a time-based parameter to enable an accurate SOH estimation. This approach is easy for practical implementation and universal to chemistry or c...

متن کامل

Improved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath

Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016